USN

Third Semester B.E. Degree Examination, Dec.2017/Jan. 2018 Engineering Mathematics - III

Time: 3 hrs.
Max. Marks: 100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.
 PART-A

Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

1 a. Find the Fourier series for the function $f(x)=x+x^{2}$ over the interval $-\pi \leq x \leq \pi$. Hence deduce that:
i) $\frac{\pi^{2}}{12}=\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\ldots .$.
ii) $\frac{\pi^{2}}{6}=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots .$.
(07 Marks)
b. Expand the function $f(x)=x(\pi-x)$ over the interval $(0, \pi)$ in half range Fourier cosine series.
(06 Marks)
c. Find the constant term and the first two harmonies for the function $f(\theta)$ given by the following table:
(07 Marks)

θ (in degrees)	0	60	120	180	240	300	360
$\mathrm{f}(\theta)$	0.8	0.6	0.4	0.7	0.9	1.1	0.8

2 a. Show that the Fourier transform of the function

$$
f(x)=\left\{\begin{array}{cc}
1-x^{2}, & |x| \leq 1 \\
0, & |x|>1
\end{array} \quad \text { is } \quad F(\alpha)=\frac{2 \sqrt{2}}{\alpha^{3} \sqrt{\pi}}(\sin \alpha-\alpha \cos \alpha)\right.
$$

Hence deduce that $\int_{0}^{\infty} \frac{\sin x-x \cos x}{x^{3}} d x=\frac{\pi}{4}$.
(07 Marks)
b. Find the Fourier cosine transform of $f(x)=\frac{1}{1+x^{2}}$.
(06 Marks)
c. If the Fourier sine transform of $f(x)$ is given by $F_{s}(u)=\frac{\pi}{2} e^{-2 u}$, find the function $f(x)$.
(07 Marks)
3 a. Find the various possible solutions of two-dimensional Laplace equation by method of separation of variables.
(07 Marks)
b. Obtain the D'Alembert's solution of the wave equation $u_{t t}=c^{2} u_{x x}$ subject to the conditions $u(x, 0)=f(x)$ and $\frac{\partial u}{\partial t}(x, 0)=0$.
(06 Marks)
c. Solve the one-dimensional heat equation $\mathrm{c}^{2} \mathrm{u}_{\mathrm{xx}}=\mathrm{u}_{\mathrm{t}}, 0<\mathrm{x}<\pi$ subject to the conditions $u(0, t)=0, u(\pi, t)=0, u(x, 0)=u_{0} \sin x$ where u_{0} is a non-zero constant.
(07 Marks)

4 a. Find a curve of the best fit of the form $y=a x^{b}$ to the following data:
(07 Marks)

x	1	2	3	4	5
y	0.5	2	4.5	8	12.5

b. For conducting a practical examination, the chemistry department of a college requires 10,12 and 7 units of 3 chemicals x, y and z respectively. The chemicals are available in 2 types of boxes: Box A and Box B. Box A contains 3, 2 and 1 units of x, y, z respectively and cost Rs.300. Box B contains 1, 2 and 2 units of x, y, z respectively and costs Rs.200. Find how many boxes of each type should be bought by the department so that the total cost is minimum. Solve graphically.
(06 Marks)
c. Solve the following LPP by simplex method:

Maximize $\mathrm{z}=2 \mathrm{x}_{1}+4 \mathrm{x}_{2}+3 \mathrm{x}_{3}$
Subject to the constraints $3 x_{1}+4 x_{2}+2 x_{3} \leq 60$

$$
2 x_{1}+x_{2}+2 x_{3} \leq 40
$$

$$
x_{1}+3 x_{2}+2 x_{3} \leq 80
$$

$$
\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \geq 0
$$

(07 Marks)

PART - B

5 a. Use Newton-Raphson method to find an approximate root of the equation $\mathrm{x} \log _{10} \mathrm{x}=1.2$ correct to 5 decimal places that is near 2.5.
(07 Marks)
b. Use Relaxation method to solve the following system of linear equations:
$8 x+3 y+2 z=13 \quad x+5 y+z=7 \quad 2 x+y+6 z=9$
(06 Marks)
c. Find the numerically largest eigen value and the corresponding eigen vector of the matrix $A=\left[\begin{array}{ccc}5 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 5\end{array}\right]$ by power method taking $X^{(0)}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{\mathrm{T}}$. Perform 6 iterations.(07 Marks)

6 a. Find the interpolating polynomial for the function $y=f(x)$ given by $f(0)=1, f(1)=2$, $f(2)=1, f(3)=10$. Hence evaluate $f(0.75)$ and $f(2.5)$.
(07 Marks)
b. Apply Lagrange's method to find the value of x corresponding to $f(x)=15$ from the following data:
(06 Marks)

x	5	6	9	11
$f(x)$	12	13	14	16

c. Evaluate $\int_{0}^{1} \frac{\mathrm{dx}}{1+\mathrm{x}^{2}}$ by using Simpson's $\frac{3^{\text {th }}}{8}$ rule dividing the interval $(0,1)$ into 6 equal parts. Hence deduce the approximate value of π.
(07 Marks)
7 a. Solve the wave equation $u_{t t}=4 u_{\mathrm{xx}}$ subject to the conditions $u(0, t)=0, u(4, t)=0$, $u_{t}(x, 0)=0$ and $u(x, 0)=x(4-x)$ by taking $h=1, k=0.5$ upto four steps.
(07 Marks)
b. Find the numerical solution of the equation $u_{x x}=u_{t}$ when $u(0, t)=0, u(1, t)=0, t \geq 0$ and $\mathrm{u}(\mathrm{x}, 0)=\sin \pi \mathrm{x}, 0 \leq \mathrm{x} \leq 1$. Carryout computations for two levels taking $\mathrm{h}=\frac{1}{3}$ and $\mathrm{k}=\frac{1}{36}$.
(07 Marks)
c. Solve Laplace's equation $u_{x x}+u_{y y}=0$ for the following square mesh with boundary values as shown in the following Fig.Q7(c).

Fig.Q7(c)
(06 Marks)
8 a. Find the z-transform of $5 n^{2}+4 \cos \frac{n \pi}{2}-4^{n+2}$ and $\sinh n \theta$.
(06 Marks)
b. Obtain in inverse z-transform of $\frac{z(2 z+3)}{(z+2)(z-4)}$.
(07 Marks)
c. Using z-transforms, solve $u_{n+2}+3 u_{n+1}+2 u_{n}=3^{n}$ given $u_{0}=0, u_{1}=1$.
(07 Marks)

Third Semester B.E. Degree Examination, Dec.2017/Jan. 2018
Analog Electronic Circuits
Time: 3 hrs.
Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.
 PART - A

1 a. Using Shockiey's equation, determine the diode current at $25^{\circ} \mathrm{C}$ for a silicon diode with $\mathrm{I}_{\mathrm{S}}=20 \mathrm{pA}$ and $\mathrm{V}_{\mathrm{D}}=0.7 \mathrm{~V}$. Find the same when $\mathrm{V}_{\mathrm{D}}=0.5 \mathrm{~V}$.
(04 Marks)
b. Sketch the output waveform for the following circuit shown in Fig. Q1 (b), and plot the transfer characteristics -
(06 Marks)

Fig. Q1 (b)
c. Check the condition for the following circuit shown in Fig. Q1 (c) to work as clamper. Sketch the output waveform.
(05 Marks)

Fig. Q1 (c)
d. Find the current in the loop, the output voltage, and the power absorbed by each device.
(05 Marks)

2 a. Derive the expression for I_{B} and V_{CE} of an emitter bias circuit.
(04 Marks)
b. Check the condition for the approximate analysis of the voltage-divider bias circuit and obtain the Q-point using approximate analysis, given : $\mathrm{V}_{\mathrm{CC}}=+12 \mathrm{~V}, \beta=120, \mathrm{R}_{\mathrm{C}}=1.5 \mathrm{~K} \Omega$, $R_{E}=620 \Omega, R_{1}=33 \mathrm{k} \Omega$ and $R_{2}=4.7 \mathrm{k} \Omega$. Mark the Q -point on the DC load - line.
(06 Marks)
c. Determine the yalues for the following circuit: $V_{E}, I_{E}, V_{C E}, V_{C}, I_{B}$ and β.
(06 Marks)

Fig. Q2 (c)
d. Design a fixed bias circuit for $\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \beta=120, \mathrm{I}_{\mathrm{C}_{\mathrm{Q}}}=1.4 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{CE}_{\mathrm{Q}}}=5 \mathrm{~V}$.

3 a. Using r_{c} model, derive the expressions for Z_{i}, Z_{o} and A_{V} of a fixed bias circuit. (06 Marks)
b. Using exact analysis, determine $\mathrm{Z}_{\mathrm{i}}, \mathrm{Z}_{\mathrm{o}}$ and A_{V} for the voltage-divider bias network if $\mathrm{R}_{\mathrm{i}}=220 \mathrm{k} \Omega, \mathrm{R}_{2}=56 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{C}}=6.8 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{E}}=2.2 \mathrm{k} \Omega, \beta=180, \mathrm{r}_{0}=50 \mathrm{k} \Omega$ and $V_{\mathrm{CC}}=20 \mathrm{~V}$.
(10 Marks)
c. For the network shown in Fig. Q3 (c), determine Z_{i}, Z_{o} and $A_{V}-$
(04 Marks)

$$
\begin{aligned}
& \mathrm{h}_{\mathrm{fe}}=150 \\
& \mathrm{~h}_{\mathrm{ie}}=2.75 \mathrm{kS} \\
& \mathrm{~h}_{\mathrm{oc}}=25 \mu \mathrm{~S}
\end{aligned}
$$

4 a. Explain the frequency response curves for RC-coupled, transformer-coupled and directcoupled amplifiers, with reasons for the drop in gain.
(09 Marks)
b. Determine the mid-band gain and the lower cut-off frequencies $f_{L_{\mathrm{S}}}$ and $f_{\mathrm{L}_{\mathrm{C}}}$ for the voltagedivider bias BJT amplifier with $\mathrm{C}_{\mathrm{S}}=10 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{C}}=10 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{S}}=1 \mathrm{k} \Omega, \mathrm{R}_{1}=36 \mathrm{k} \Omega$, $\mathrm{R}_{2}=8.2 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{E}}=1.5 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{C}}=4.7 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega, \beta=100$ and $\mathrm{V}_{\mathrm{CC}}=20 \mathrm{~V}$.
(11 Marks)

PART-B

5 a. For a Darlington connection, derive the expressions for Z_{i}, Z_{0}, A_{i} and A_{v}.
(12 Marks)
b. Mention the advantages and disadvantages of the negative feedback.
(04 Marks)
c. Calculate the gain, input impedance and output impedance of a voltage-series-feedback amplifier having $A=-300, R_{i}=1.5 \mathrm{k} \Omega, R_{0}=50 \mathrm{k} \Omega$ and $\beta=-\frac{1}{15}$.
(04 Marks)
6 a. Enumerate the types of power amplifiers along with their efficiency, conduction angle and Q-point.
(05 Marks)
b. Prove that the maximum efficiency of a class-B power anplifier is 78.5%. (05 Marks)
c. Calculate the efficiency of the following circuit shown in Fig. Q6 (c), for an input current swing of 10 mA .
(05 Marks)

Fig. Q6 (c)
d. Along with the circuit diagram, explain the working of Class-C amplifier.
(05 Marks)
7 a. Along with the circuit diagram, explain the working of a BJT phase-shift osciliator.
(06 Marks)
b. Design a Wien-bridge oscillator for $\mathrm{f}_{0}=6 \mathrm{kHz}$, making suitable assumptions. (06 Marks)
c. Along with proper diagrams, explain the series resonant and parallel resonant crystal oscillators using BJT.
(88 Marks)
8 a. Explain the operation of JFET amplifier using fixed bias. Draw the JFET small signal model, and derive the expressions for $\mathrm{Z}_{\mathrm{i}}, \mathrm{Z}_{0}$ and A_{V}.
(10 Marks)
b. With necessary circit diagram, obtain the expressions for Z_{i}, Z_{o} and A_{V} for an E-MOSFET voltage-divider configuration.
(10 Marks)

Third Semester B.E. Degree Examination, Dec.2017/Jan. 2018 Logic Design

Time: 3 hrs.
Max. Marks: 100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

1 a. Represent the canonical minterm forms in decimal notation :
i) $f_{1}=x \bar{y}+y z$
ii) $f_{2}=\bar{a} c+b c \bar{d}+a d$.
(05 Marks)
b. Show that $\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\sum \mathrm{m}(0,1,2,5,6,8,9,10,13,14)=\pi \mathrm{M}(3,4,7,11,12,15)$.
(08 Marks)
c. Simplify the following Boolean function and realize the simplified expression using basic gates.
$\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e})=\sum \mathrm{m}(0,1,4,8,9,11,15,16,24,26)+\operatorname{dm}(10,20,22,23,25,27,31)$.
(07 Marks)
2 a. Simplify the Boolean function $f\left(a, b, c\right.$. $\left.\mathrm{d}_{\mathrm{i}}\right)=\Sigma \mathrm{m}(0,1,2,7,8,9,10,13,15)$ using Quine Mc Cluskey tabulation method and verify the answer using k-map. (10 Marks)
b. Simplify the Boolean function $f(a, b, c, d)=\sum m(0,2,3,4,5,8,10,11)+\operatorname{dm}(7,13,14)$ using Map entered variable k-map. With "d" as map entered variable, verify the answer using k -map,.
(10 Marks)

3 a. Design a combinational circuit using basic gates to convert excess 3 binary code to BCD code.
(10 Marks)
b. Implement full adder using decoder.
(05 Marks)
c. Design a 4 to 16 decender using 3 to 8 decoders.
(05 Marks)

4 a. Design a 4 bit BCD adder circuit using 7483IC with self correcting circuit. That is a provision to be made in the circuit, in case the sum of BCD exceeds 9 .
(10 Marks)
b. Realize the Boolean function $\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c})=\sum \mathrm{m}(0,1,4,5,6)$ using $4: 1$ mux. (05 Marks)
c. Explain !ook - ahead carry adder and give its advantages and disadvantages.

PART - B

5 a. Obtain characteristic equation of a S-R flip-flop. ($\mathbf{5}$ Marks)
b. Explain the working of an universal shift register. (05 Marks)
c. Expiain the working of a master -slave JK flip-flop with timing diagram for mastcr and slave. Show how race around condition is eliminated.
(10 Marks)
6 a. Design an asynchronous mod-8 counter using JK flip-flop and draw its timing diagram.
b. Explain why asynchronous counter is called ripple counter.
c. Explain mealy and Moore sequential circuit models.

7 a. Draw and explain Moore JK flip-flop state diagram.
(05 Marks)
b. For the state machine shown Fig.Q7(b) obtain : i) state table ii) Transition table iii) excitation table for JK flip-flop iv) logic diagram.

Fig.Q7(b)

8 a. Design a cyclic BCD up synchronous counter using T tlip-flops.
(10 Marks)
b. Design a cyclic synchronous counter using D flip-flops to generate a sequence of 5421 code. (Hint: $0,1,2,3,4,8,9,10,11,120,1 \cdots$) sequence.
(10 Marks)

Third Semester B.E. Degree Examination, Dec.2017/Jan. 2018 Network Analysis

Time: 3 hrs.
Max. Marks: 100
Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART-A

1 a. Define the following terms with examples:
i) Lumped Element
ii) Active Element
iii) Practical Source.
(03 Marks)
b. Find the current I_{3} using mesh analysis for the circuit shown in fig.Q1(b), if the circuit is operating at frequency $5000 \mathrm{rad} / \mathrm{s}$.
(07 Marks)

Fig.Q1(b)

c. For the circuit shown in fig. Q1(c), find the power delivered by dependent source using node analysis.
(06 Marks)

Fig.Q1(c)

d. Find the resistance R_{AB} for the network shown in fig. $\mathrm{Q}(\mathrm{d})$, using $\Delta-\mathrm{Y}$ conversion.
(04 Marks)

Fig.Q1(d)

2 a. Define the following terms with example:
i) Graph ii) Tree
iii) Co - tree.
(03 Marks)
b. For the circuit in fig.Q2(b), write the tie - set matrix using AB, BC and CA or the links of the tree. Obtain the equilibrium equations in matrix from using KVL and calculate all loop currents and branch voltages.
(10 Marks)

Fig.Q2(b)

1 of 4
c. Draw the oriented graph for the circuit shown in fig.Q2(c). Also find fundamental cut - set schedule using $X_{c 1}, R_{2}$ and $X_{L 1}$ or the twigs of the tree. Find admittance matrix also.
(04 Marks)

Fig.Q2(c)

d. Find the dual of the circuit shown in fig.Q2(d).
(03 Marks)

Fig.Q2(d)

3 a. Find V_{x} using superposition for the circuit showing fig.Q3(a).
(08 Marks)

Fig.Q3(a)

b. Find the voltage V_{L} across the inductor and verify reciprocity theorem for the circuit shown in Fig.Q3(b).
(06 Marks)

Fig.Q3(b)

c. State and prove Milliman's theorem.
(06 Marks)
4 a. Find the Theyenin's equivalent circuit across terminals a \& b for the circuit shown in fig.Q4(a). Also find the current I_{L} using this equivalent circuit.
(08 Marks)

Fig.Q4(a)
b. State and prove Norton's theorem.
(05 Marks)
c. Find Z_{L} for maximum power transfer for the circuit shown in fig.Q4(c). And also find the average maximum power absorbed by Z_{L}.
(07 Marks)

PART - B

5 a. For the circuit shown in fig.Q5(a), find the transfer function, resonant frequency half power frequencies, bandwidth and Q - factor.
(10 Marks)

Fig.Q5(a)

b. Define the term Q - factor. Using this definition find the Q - factor of an inductor and a capacitor.
(05 Marks)
c. For the network shown in fig.Q5(c), find the value of C for resonance to take place at $\mathrm{w}=5000 \mathrm{rad} / \mathrm{s}$.
(05 Marks)

Fig.Q5(c)

6 a. Write a short note on Initial and Final conditions of circuit elements under switching conditions.
(06 Marks)
b. In the circuit shown in fig.Q6(b), the switch S_{1} has been open for a long time before closing at $t=0$. Find $V_{c}\left(0^{+}\right), i_{L}\left(0^{+}\right), V c(\infty), i_{L}(\infty), \frac{d i_{L}}{d t}\left(0^{+}\right)$and $\frac{d^{2} i_{L}}{d t^{2}}\left(0^{+}\right)$.
(06 Marks)

c. For the circuit shown in fig.Q6(c), calculate $\mathrm{i}_{\mathrm{L}}\left(0^{+}\right) \frac{\mathrm{di}_{\mathrm{L}}\left(0^{+}\right)}{\mathrm{dt}}, \frac{\mathrm{d}}{\mathrm{dt}} \mathrm{V}_{\mathrm{c}}\left(0^{+}\right), \mathrm{V}_{\mathrm{R}}(\infty), \mathrm{V}_{\mathrm{c}}(\infty)$ and $i_{2}(\infty)$
(08 Marks)

Fig.Q6(c)

a. Find $V_{o}(t)$ of the circuit shown in fig.Q7(a).
(10 Marks)

Fig.Q7(a)

b. Find the impuise response of the circuit shown in fig.Q7(b).
(06 Marks)

Fig.Q7(b)

c. Find the Laplace Transform of non - sinusoidal periodic waveform shown in fig.Q7(c).

Fig.Q7(c)

8 a. Find the Z - transform in terms of Y - parameters.
b. For the network shown in fig.Q8(b), find the transmission line parameters.
(04 Marks)
(08 Marks)

c. Find the h - parameters of the network shown in fig.Q8(c)
(08 Marks)

Fig.Q8(c)

Third Semester B.E. Degree Examination, Dec.2017/Jan. 2018 Electrical \& Electronic Measurements \& Instrumentation

Time: 3 hrs.

Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

1 a. Define the following:
(i) SI units
(ii) Fundamental units
(iii) Absolute units
(iv) Derived units.
b. The expression for eddy current loss P per meter length of the wire may be written as $P_{e} \alpha f^{a} B_{m}^{b} d^{\bullet} \rho^{g}$ where $f=$ frequency, $B_{m}=$ max imum flux density, $d=$ diameter of wire, $\rho=$ resistivity and $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and g are constants. Determine the values of $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{g}$ from the dimensions of equation in LMMI system.
(07 Marks)
c. Obtain Wheatsone bridge sensitivity in terms of the parameters of the bridge. ($\mathbf{0 9}$ Marks)

2 a. With the help of neat diagram, explain the working of a Megger, used for the measurement of earth resistance.
(08 Marks)
b. Explain how Anderson bridge is used for measurement of inductance of the coil. ($\mathbf{0 8} \mathrm{Marks}$)
c. Write a note on shielding of bridges.
(04 Marks)
3 a. What are shunts and multipliers? Derive an expression for both, with reference to the meters with which they are used in electrical circuits.
(08 Marks)
b. Explain the working of CT and PT wvith phasor diagrams and applications of the same.
(08 Marks)
c. Write a note on turns compensation used in CTs. (04 Marks)

4 a. Explain the construction and working principle of singie phase induction type energymeter. What are the adjustments required for error calibration?
(10 Marks)
b. With a neat diagram, explain the construction and operation of the electrodynamometer type wattmeter.
(06 Marks)
c. A 3 phase 500 V motor load has a power factor of 0.4 . Two wattmeters are connected to measure the input. They show that input to be 30 KW . Find the reading of each instrument.
(04 Marks)

PART - B

5 a. How are Digitai Voit Meters (DVM) are classified? Explain with neat circuit diagram, the working of successive approximation type of DVM.
(07 Marks)
b. Explain the construction and operation of Weston frequency meter. \quad ($\mathbf{8}$ Marks)
c. A coil is tuned to resonance at 600 kHz with a resonating capacitance of 40 pF . At 300 kHz , the resonance is obtained with a resonating capacitance of 175 pF . Find the self-capacitance of the coil and its inductance.
(05 Marks)
6 a. With a neat block diagram, explain the working of a digital storage oscilloscope. (10 Marks)
b. Explain the front panel details of a typical dual trace oscilloscope.
(10 Marks)
7 a. Explain with a neat sketch, the construction and working of a LVDT.
(08 Marks)
b. What are the different types of strain gauges? Derive an expression for the gauge facter.
(08 Marks)
c. Explain the classification and selection of the transducers.
(04 Marks)
8 a. Explain with a block diagram, the functional operation of digital data acquisition system and mention its uses.
(08 Marks)
b. With a neat sketch, explain the working of $\mathrm{X}-\mathrm{Y}$ recorders.
(07 Marks)
c. Write a note on display devices.

USN

10EE36

Third Semester B.E. Degree Examination, Dec.2017/Jan. 2018
Electric Power Generation
Time: 3 hrs .
Max. Marks: 100

> Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. With a neat block diagram, explain the working of a Geo-thermai power plant. (08 Marks)
b. Explain with diagrams the working of a single basin and double basin tidal power plant.
(06 Marks)
c. What is co-generation? Discuss benefits of it.
(06 Marks)
2 a. With a neat block diagram explain in brief the main components of a diesel power plant.
(10 Marks)
b. Discuss the applications of 'distributed generation' in brief.
(05 Marks)
c. Explain in brief working of a bio-generation plant.
(05 Marks)
3 a. Explain the thermal power station with a neat block diagram. (08 Marks)
b. List the factors to be considered for the selection of site for a hydro - electric power station.
(06 Marks)
c. Classify the Hydro electric plants based on:
i) Water flow regulation
ii) head
iii) Load
(06 Marks)

4 a. Explain briefly with neat diagram components of a nuclear reactor.
(10 Marks)
b. Mention advantages and disadvantages of CANDU type reactor.
(06 Marks)
c. Describe briefly the working of pressurized water reactor.
(04 Marks)

$\underline{\text { PART }-\mathbf{B}}$

5 a. Explain the following terms as applied to power system:
i) Load factor ii) Plant capacity factor
iii) Plant use factor (iv) Diversity factor.
(08 Marks)
b. A generating station has a M.D of 80 MW , a Load factor of 65%, a plant capacity factor of 40% and a plant us factor of 85%. Find :
i) Daily energy produced
ii) Reserve capacity of the plant
iii) Maximum encrgy that could be produced daily if the plant runs for 12 hrs at full load
iv) Energy produced/yr
(12 Marks)

6 a. What is tarif? Explain: i) Block rate tariff ii) P.f tariff (08 Marks)
b. A generating station has a M.D of 100 MW. Calculate the cost per unit generated from the following data :
Capita! cost $=$ Rs 200×10^{6}; Annual Load factor $=40 \%$
Annual cost of fuel and oil $=$ Rs 15×10^{6}
Taxes wages and salaries etc $=$ Rs 10×10^{6}
Interest and depreciation $=15 \%$
(i2 Marks)
7 a. Mention the advantages and disadvantages of neutral grounding. (06 Marks)
b. Explain solid grounding with neat sketches.
(08 Marks)
c. Discuss merits and demerits of resistance grounded system.
(06 Marks)
8 a. With a schematic arrangement and phasor diagram, explain the Arc - Suppression coil grounding.
(10 Marks)
b. Explain about resistance grounding.
(05 Marks)
c. Explain about earthing transformer.

MATDIP301
Third Semester B.E. Degree Examination, Dec.2017/Jan. 2018 Advanced Mathematics - I

Time: 3 hrs .
Max. Marks: 100
Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

1 a. Find the modulus and amplitude of $\frac{4+2 \mathrm{i}}{2-3 \mathrm{i}}$.
(06 Marks)
b. Express the complex number $2+3 \mathrm{i}+\frac{1}{1-\mathrm{i}}$ in the form $\mathrm{a}+\mathrm{ib}$.
(07 Marks)
c. Simplify $\frac{(\cos 3 \theta+i \sin 3 \theta)^{4}(\cos 4 \theta-i \sin 4 \theta)^{5}}{(\cos 4 \theta+i \sin 4 \theta)^{3}(\cos 5 \theta+i \sin 5 \theta)^{-4}}$.
(07 Marks)

2 a. Find the $n^{\text {th }}$ derivative of $\mathrm{e}^{\mathrm{ax}} \sin (\mathrm{bx}+\ell)$.
(06 Marks)
b. Find the $n^{\text {th }}$ derivative of $\frac{x^{2}}{2 x^{2}+7 x+6}$.
(07 Marks)
c. If $y=e^{a \sin ^{-1} x}$, prove that $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-\left(n^{2}+a^{2}\right) y_{n}=0$.
(07 Marks)
3 a. If ϕ is the angle between the tangent and radius vector to the curve $r=f(\theta)$ at any point (r, θ), prove that $\tan \theta=\frac{\mathrm{rd} \theta}{\mathrm{dr}}$
(06 Marks)
b. Find the angle of intersection between the curves $r^{n}=a^{n} \cos n \theta$ and $r^{n}=b^{n} \sin n \theta$.
c. Using Maclaurin's series, expand $\tan \mathrm{x}$ up to the term containing x^{5}.
(07 Marks)
(07 Marks)

4 a. If $Z=f(x+c t)+\phi(x-c t)$, prove that $\frac{\partial^{2} z}{\partial t^{2}}=C^{2} \frac{\partial^{2} z}{\partial x^{2}}$.
(06 Marks)
b. If $u=\sin ^{-1}\left(\frac{x^{2}+y^{2}}{x+y}\right)$ prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y} \tan u$.
(07 Marks)
c. If $u=f(x-y, y-z$, $i-x)$, prove that $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0$.
(07 Marks)

PART - B

5 a. Obtain the reduction formula for $\int \cos ^{n} x d x$.
(06 Marks)
b. Using reduction formula evaluate $\int_{0}^{a} \frac{x^{7}}{\sqrt{a^{2}-x^{2}}} d x$.
(07 Marks)
c. Evaluate $\int_{0}^{1} \int_{0}^{1} e^{x+y} d x d y$.
(07 Marks)

6 a. Evaluate $\int_{0}^{1} \int_{0}^{2} \int_{1}^{2} x^{2} y z d x d y d z$.
b. Prove that $\beta(m, n)=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$.
c. Prove that $\Gamma\left(\frac{1}{2} / 2\right)=\sqrt{\pi}$.
(07 Marks)
(07 Marks)
(06 Marks)

7 a. Solve $3 e^{x} \tan y d x+\left(1-e^{x}\right) \sec ^{2} y d y=0$.
b. Solve $(2 x+3 y+4) d x-(4 x+6 y+5) d y=0$.
c. Solve $\frac{d y}{d x}+y \tan x=\cos x$.

8 a. Solve $\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+5 y=-2 \cosh x$.
b. Solve $\left(D^{2}-4 D+3\right) y=\sin 3 x \cos 2 x$.
(06 Marks)
(07 Marks)
(07 Marks)
c. Solve $\frac{d^{2} y}{d x^{2}}+4 y=x^{2}+\cos 2 x$.

